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Abstract

The performance of microstrip elements of arbitrary shape
as resonators, directional couplers, antennas and multilevel
interconnects is examined in this paper. The mixed poten-
tial integral equation (MPIE) method is employed with
triangular patch functions to model microstrip elements
of arbitrary shape. The model is equally applicable to mi-
crostrip circuit and/or microstrip antenna design. The pa-
per includes thorough investigation of the excitation mech-
anism. This presentation will focus on proximity coupled

microstrip elements and multilevel interconnects.

I. INTRODUCTION

This paper focuses on the modeling of microstrip
elements of arbitrary shape in multilayered media. Em-
phasis will be placed on the impact of the excitation mech-
anism on circuit performance. Thus, for example, in the
case of rcsonators, the change in resonant frequency due
to the presence of proximity coupling from the embedded
microstrip feedline will be presented. Several classes of
microstrip resonators of arbitrary shape will be considered
including circular, elliptical, polygonal ring geometries and
spiral clements {Archimedean and equilateral). The mi-
crostrip feedline will be printed at an interface helow or
above tle resonator in a multilayered medium. The use of
these classes of resonators for the design of filters, circu-
lators, directional couplers and antennas will be discussed

with practical examples.
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The MPIE method [1]-[3] combined with the trian-
gular patch expansion function [4] is developed to model
general microstrip geometries. The MPIE was found to
be better for numerical modeling than the previously used
electric field integral equation (EFIE) techniques and the
spectral-domain analysis [5]. Furthermore, a better phys-
ical interpretation of current flow and field distribution is
obtained with this approach. The triangular basis func-
tion has been successfully used in the past to solve irregu-
lar scatterers [4, 6]. It describes the vector surface current,
and matches the boundary conditions with no normal com-
ponents along the boundary edges. It can also be used to

represent non-planar current flow.

The MPIE method presented here starts from mesh-
ing the whole microstrip geometry with small triangular
faces. The algorithm developed by McKinzie [7] is used
in this analysis. Both spatial-domain Green’s functions,
as obtained from vector and scalar potentials respectively,
are evaluated by computing a Sommerfeld-type integral.
By means of the moment method (MM) a matrix equation
can be sct up. Several numerical techniques are applied to -
speed up calculation. They will be introduced in the next
section. Three examples are shown and are discussed in

section III.

II. THEORY

For a generalized multilayered medium shown in
Fig. 1, the EFIE can be set up, by applying the boundary
condition of zero tangential field on metal surface S, as

ix Bo(i) = =i x [Gp(F|7)- J(R)dS, (1)
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where 53 is the electric field dyadic Green’s function, and
J, is the surface current distribution. For simplicity, we ne-
glect, in the present examples, the conductor and dielectric
losses. If we introduce the magnetic vector potential (/i‘)
and charge scalar potential (V') as E=-— jwA—VV, then
Eq.(1) can be rewritten as an MPIE:

A x B = ax | jw/am 7) - Jo(7) dS,
+ v / Go(F | 7)as(7) dS)]  (2)

where 5,4 and G, are the dyadic Green'’s function for Aand
V, respectively. Both EA and G, are derived in the spec-
tral domain analytically first, then can be evaluated in the
spatial domain through the computation of Sommerfeld-
type integrals. J, and ¢s are the unknown distribution of
surface electric current and charge. They are connected
to each other by the continuity equation. The reason to
use MPIE instead of EFIE is that it is not necessary to
use two-dimensional infinite integrals with highly oscillat-
ing functions. After removing the singular term, which
occurs when source and field points coincide and has been
proven to yield closed-form results [8], only surface inte-
grals with well-behaved functions over small areas need to

be calculated.

To model the arbitrarily-shaped surface current and
charge distribution, the triangular patch subdomain func-

tion, shown in Fig. 2, is defined as

(3 o N - -
ﬁf“ —7111)“5;1:—‘/)11.*‘ ) ECF{:’

trin(f) = { S (= 7) = 3=h, TeTy (3)
0 : otherwise,

and is adopted to expand the unknown quantities. This
representation can describe the vector current flowing, and
its divergence is a constant over the associated triangu-
lar face. Furthermore, it matches the boundary condi-
tion since no normal components exist except the common
edge. The grid algorithm developed in [7] is used to mesh

the whole circuit to small triangular faces.

The next step is to apply Galerkin’s procedure and
MM to reduce MPIE to matrix form. Choosing the same

current cell as the testing function and by utilizing vector
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identities, Eq.(2) can be reformulated as a matrix equation
fz1
Zmn

= [V], with the following matrix elements:
= Jw /S ds /5 AS,[tFin(F) - GalF | 7o) - tFin(7)]

1 ~ -
N dS/ dSsv't.m G,(7 -‘s Vs' ‘n-:z
25 [l 48 [ dSIY - Hin (@G, (7| RV, - trin()]
4
In this analysis, the delta-gap source, attached at the end

of input line, is used to be the excitation mechanism.

Therefore, no calculation is necessary for {V].

Several numerical techniques are applied to accel-
erate the computation. The most time consuming step is
to evaluate the Sommerfeld integral of the spatial-domain
Green’s function 5,4 and G,. In this analysis, numeri-
cal quadrature method with self-convergent detection is
applied in the computer codes. Because of the smooth
behavior of EA and G,, only a few points are computed
through numerical integration, then the values of ﬁA and
G, in Eq.(4) are interpolated from these constructed ar-
rays. Moreover, the non-singular part of Z,, are ap-
proximated by three-point average, while four seven-point
quadratures combined with analytic expressions (8] are
used to evaluate the singular parts. The filling process
of impedance matrix is based on faces instead of interior
edges to reduce the redundant calculation of interaction

from same face pairs.

III. NUMERICAL RESULTS AND
DISCUSSION

A. Resonator Elements

The resonator geometry of arbitrary shape is shown
in Fig. 3. In each case the excitation is provided by mi-
crostrip line embedded on an interface above or below the
resonator. Results will be shown for several ring resonator
geometries. Fig. 4 shows an example of a circular ring res-
onator with a resonant frequency at f=12 GHz. In this
example €=2.2 demonstrate that this resonator is actually
an efficient microstrip antenna eclement. For the ellipti-
cal ring resonator, shown in Fig. 5, substrate is chosen as
€=9.8. Results for other ring geometries will be shown

during the presentation.



B. Microstrip Radial Stubs

Fig. 6 shows the transmission coeflicient of single-
layered microstrip shunt-connected radial stub. Compared
to the measurement in [9], good agreement over wide fre-
quency range is obtained. Additional stub geometries will

also be shown as a comparative study in stub design.

C. Mitered-Bend Overlap Coupler
The triangular patch function is well suited for

mitered-bend microstrip discontinuity design. The cou-
pling length has been changed to investigate the best per-
formance for a directional coupling. Fig. 7 shows the
scattering parameters of port #2 with quarter guided-
wavelength coupling length. Since the whole circuit is not
matched very well, the low reflection and isolated port can
not be achieved. An optimized design will be shown during
the presentation.

IV. CONCLUSION

The full-wave spatial-domain analysis has been used
to develop a generalized dynamic model for arbitrarily-
shaped microstrip circuits and antennas in multilayered
structures. The results presented show excellent proper-
ties and find promising applications in MMIC coupler and
filter designs. This analysis provides an accurate and flex-
ible algorithm to model microstrip discontinuities as well

as microstrip antennas.
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Figure 1: Generic multilayered medium.
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Figure 2: Triangular patch subdomain function.
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Figure 3: Ring resonator of arbitrary shape.
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Figure 4: Reflection coefficient of microstrip circu-

lar ring resonator. €1=¢,9=2.2, d;=dp=0.794mm, line
width=2.25mm, R,y,=7.5mm, R;,=3mm, coupling length

from center=3.75mm, 224 triangular faces in total.
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Figure 5: Reflection coefficient of microstrip ellipti-

cal ring resonator. €.,=€2=9.8, d;=d»=0.635mm, line
width=0.406mm, R,,,=3.385mm, R;,=2.241mm, scal-
ing factor (a,b)=(1.2, 0.748), coupling length from cen-
ter=22.363mm, 296 triangular faces in total.
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Figure 6: Transmission coefficient of microstrip ra-

dial stub. €,=10.0, substrate thickness=0.635mm, line
width=0.6mm, radius=7.5mm, radial angle:ﬁOﬂ 212 tri-

angular faces in total. Measurement is from [9].
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Figure 7: Scattering parameters of mitered-bend cou-
pler. €,=10.2(top),2.2(bottom); thickness=0.635mm(top),
0.635mm (bottom);

microstrip line width=1.854mm/(top),1.112mm(bottom);
coupling line width=0.742mm(top),0.445mm (bottom);
overlap length=3.708mm; 368 triangular faces in total.



